Contents

EURAXESS Members in Focus: Greece 2
- Research and Development in Greece 2
- Greek R&D Strategy .. 3
- Funding and Recruitment Opportunities 4
- International Research Cooperation and/or Mobility Examples 5

Hot topic: MSCA Individual Fellowships: opportunities for Japanese researchers and Japanese host institutions 6
- European Fellowships and Global Fellowships 6
- Eligibility criteria ... 6
- Duration of the supported research stays 7
- Financial aspects .. 7
- Individual Fellowships still underused in Japan 8
- Preparing a proposal .. 8
- Additional support materials ... 9

Meet three Japanese MSCA IF grantees who came back to Japan ... 10

EURAXESS Japan activities .. 16
- Save the date: European Research Day 2017 16
- Grants In Practice 2017: MSCA IF and ERC training 16
EURAXESS Members in Focus: Greece

Research and Development in Greece

Greece has a number of research institutions conducting cutting-edge basic research. Five of the Top-50 research organizations that receive funding through the EU’s Framework Programme for Research and Innovation (Horizon 2020) are from Greece. The capacity of Greek research institutes to conduct excellent research is also reflected in the relatively good performance in terms of outstanding scientific publications. Greece’s performance (2015) is above the EU average for some individual indicators such as: international scientific co-publications (120% of the EU average), non R&D innovation expenditure in the private sector (127%), SMEs marketing/organisational innovations (124%) and innovative SMEs collaborating with others (120%).

At the end of 2013 (most recent available data), Gross Domestic Expenditure on R&D (GERD) was at 1.47 billion euro, increasing from 0.67% of GDP in 2011 to 0.8% of GDP in 2013. In the context of the revision of the National Reform Programme (for the year 2014), the Greek authorities have proposed a more ambitious target of as much as 1.2% of GDP. The Higher Education sector is the largest R&D performer accounting for 38.2% of the total R&D expenditure in 2015. At the end of 2015, the Higher Education sector was composed of 22 public universities and 14 public Technological Education Institutes (TEI). In addition to public, there are 28 private universities of various types accredited by the Ministry of Education, Research and Religious Affairs operating in the country. There are 15 public research organisations, of varying sizes, supervised by the GENERAL SECRETARIAT FOR RESEARCH AND TECHNOLOGY (GSRT).

Greece is strategically located at the crossroads of Europe, Asia, and Africa.

The R&I strategy for the next programming period (Revision of the implementation law (Law 4386/2016) of the National Strategy for Research, Technological Development and Innovation-ESETAK), which includes the Smart Specialisation strategy (RIS3), focuses on the following priorities:

1. Greece is a developed democratic country with a high standard of living. A founding member of the United Nations, Greece was the tenth member to join the European Communities (precursor to the European Union) and has been part of the Eurozone since 2001.

2. The Higher Education sector is the largest R&D performer accounting for 38.2% of the total R&D expenditure in 2015. At the end of 2015, the Higher Education sector was composed of 22 public universities and 14 public Technological Education Institutes (TEI). In addition to public, there are 28 private universities of various types accredited by the Ministry of Education, Research and Religious Affairs operating in the country. There are 15 public research organisations, of varying sizes, supervised by the GENERAL SECRETARIAT FOR RESEARCH AND TECHNOLOGY (GSRT).

1. Foundation for Research and Technology Hellas (FORTH)- www.forth.gr/
2. Center for Research and Technology Hellas (CERTH)- www.certh.gr/root.en.asp
5. ATHENA Research and Innovation Center in Information, Communication and Knowledge Technologies- www.athena-innovation.gr/
- areas of traditional strength for the country (examples: shipping, tourism, energy)
- areas of recent successes in terms of critical mass and on-going activities (examples: IT, pharmaceuticals, engineering, energy);
- areas of high added value and able to deliver major economic benefit and employment prospects (examples: energy, nutrition – food sciences); and
- areas of national interest (examples: food production, archaeology, culture, energy, defence, biomedicine).

In total, 8 technological areas were identified matching the priorities; Biosciences, Agro-Biotechnology Nutrition, Energy and Environment, Computer Science and Mathematics, Physical Sciences, Engineering, Social Sciences and Arts and Humanities, with about 28% of the funding for the next programming period 2014-2020 allocated to Biosciences, followed by Engineering (18%) and Physical Sciences (12%)\(^5\). Approximately 27% of the total funding is expected to be dedicated to societal challenges.

Greek R&D Strategy

The *New R&D&I Strategy for the Programming Period 2014-2020*\(^6\) aspires to strengthen the Greek research system (human capital and infrastructure), conduct research relevant to the needs of the country and thus make R&D an indispensable tool for the further development of the Greek economy. In this context, it is intended to launch programmes focusing on the development of human capital for research in a knowledge economy (including support to excellent researchers, support to mobility of researchers to work in enterprises, and support to training for innovation activities, as well as starting grants for new researchers).

Entrepreneurship and Innovation

The Business Sector is the second largest R&D provider of funds and performer in Greece (31.8% and 33.3% of the total GERD respectively). Based on EU2016 Industrial R&D Investment Scoreboard, *five Greek companies (one more than the previous year) featured among the top EU companies on R&D spending*: PHARMATHEN (Pharmaceuticals & Biotechnology, www.pharmathen.com), INTRALOT (Technology Hardware & Equipment, www.intralot.com/), the National Bank of Greece (Banks, www.nbg.gr), GALAXIDI Marine Farmand (fish farm, www.gmf-sa.gr) and Creta Farm (meat and deli meats, www.cretafarms.gr). A large number of SMEs and start-ups are also declaring R&I activities mainly in service and incremental innovations\(^7\).

\(^5\) National Strategic Framework for Research and Innovation 2014-2020, National Council of Research and Technology

\(^6\) Greek National Reforms Programme 2014, April 2014

According to the National Reform Programme 2016, Greek enterprises are expected to increase their Business Expenditures on Research and Development (BERD) to approximately 0.38% of the GDP in 2020. A large number of SMEs and start-ups have been undertaking R&I activities mainly in services and incremental innovations.

Brain drain has been recognized as a key challenge in the Operational Program for Competitiveness, Entrepreneurship and Innovation as well as the Greek Strategy for the European Research Area – Roadmap 2015-2020 (GSRT, 2016). The recently established (2016) National Foundation for Research and Innovation (NFRI-ELIDEK) in the footsteps of the National Science Foundation (NSF) of the US, and Germany's Deutsche Forschungsgemeinschaft (DFG) aims to address this challenge. The Foundation, co-sponsored by the European Investment Bank (EIB) and national funds, aims to fund combined with Greek national funds. The aim is to attract and to keep highly-qualified scientists in Greece, through funds devoted both to curiosity driven research and entrepreneurship & innovation. To this end, the Greek Research and Innovation Foundation will allocate 240 million euro by 2019.

Greece has valuable assets that contribute to the transition to an innovation-driven economy:

- leading research institutions,
- medium and high-tech firms, e.g. in the IT and pharmaceutical sector, as well as a certain number of innovative startups in the information technology sector in Athens,
- a considerable diaspora in research, finance and business

Enterprise Greece is designed to promote and support Greek exports of goods & services and investments in Greece.

Funding and Recruitment Opportunities

The government constitutes the largest R&D source of funds (in 2015, 52.7% of the GERD was funded by GOV) and the third largest R&D performer (after Higher Education Institutes and Business). The National Council for Research and Innovation (NCRI) is the supreme State advisory body for national policy for research, technology and innovation. The responsibility of funding research is shared between the Ministry of Education, Research and Religious Affairs and the Ministry of Economy, Development and Tourism. Funds coming from the EU Regional Operational Programmes fall typically under the competence of the Regional Authorities. The Ministry of Rural Development and Food supervises the National Agricultural Research Foundation (NAGREF), which undertakes research and technology in agricultural, forest, animal and fish production and other related areas in Greece. The Higher Education sector is the largest R&D performer accounting for 38.2% of the total R&D expenditure in 2015. The Business Sector is the second largest R&D funder and performer in Greece (31.8% and 33.3% of the total GERD respectively).
The new Law on Research Technological Development and Innovation acknowledges the pivotal role of the General Secretariat for Research and Technology (GSRT), part of the Ministry of Education, Research and Religious Affairs, in the design of R&D programmes and the allocation of funding.

International Research Cooperation and/or Mobility

Examples

International cooperation is sought primarily through bilateral agreements. Such agreements have been signed between Greece various countries in Asia and in other parts of the world. Currently, agreements are planned with Chile, Montenegro, and Azerbaijan.

Some examples of S&T cooperation:

- E-Rare-3 Call (www.erare.eu) for proposals 2017: Transnational Research Projects for Innovative Therapeutic Approaches for Rare Diseases, to which 17 countries including Greece and Japan intend to participate in.

Agreements for Scientific Cooperation

- Cooperation agreement between HOPE-A (Hellenic Organic and Printed Electronics Association) and JAPEC (Japan Advanced Printed Electronics Consortium) signed on 5 July 2016. This Cooperation Agreement has opened new channels for effective collaboration, new cooperation opportunities, and mutual promotion of innovation activities between the HOPE-A and JAPEC members in OLED Lighting and the emerging technological field for Organic and Printed Electronics Applications in Energy.

- The 7th International Exhibition on Nanotechnologies, Flexible Organic Electronics & Nanomedicine (www.nanotexnology.com) will take place from 3 to 7 July 2017 in Thessaloniki. Matchmaking events and a Business Forum are foreseen in the framework of Nanotexnology 2017.

- Commitment initially of EUR 37 million from the smart specialization strategy (RIS3), in order to finance the programmes under the bilateral agreements until 2020. Part of the government’s priorities is the promotion of the cooperation programmes in other countries within and outside the EU.

8 R&I sector, Summarised Review, March 2015-August 2015, Ministry of Culture, Education and Religion, pg. 8

http://ec.europa.eu/euraxess
Hot topic: MSCA Individual Fellowships: opportunities for Japanese researchers and Japanese host institutions

Within the Marie Sklodowska Curie Actions (MSCA), a new call for 2017 Individual Fellowships was launched last April, as every year. This call offers a wealth of opportunities for both Japanese (or Japan-based) researchers and Japanese research institutions.

Individual Fellowships are divided in two categories: European Fellowships and Global Fellowships, both characterised by the goal of promoting excellent science, career development, international and intersectoral mobility, transfer and exchange of knowledge, focus on research and innovation.

This particular Action of MSCA is appealing to Japanese researchers and Japanese research institutions, due to the fact that its eligibility criteria allow Japanese researchers to be active candidates, entitled to receive EU funding, and in the same dimension, Japanese host institutions are eligible to host researchers from the European Union and Associated countries (EU/AC).

European Fellowships and Global Fellowships

A characteristic feature of the MSCA Individual Fellowships is that the programme is totally bottom up; therefore open to all fields of knowledge, offering a unique flexibility and variety of research topics for project proponents.

- In the case of a European Fellowship, the applicant researcher can move either within Europe or from a Third Country (including Japan) to any European Member States or Associated Countries.
- In the case of a Global Fellowship, the researcher moves from Europe to any Third Country, including Japan, and then goes back to his/her host institution in Europe.

For Japan, this means equal mobility opportunities with any of the 28 countries which are part of the European Union, and the 16 associated countries, giving a wide range of options and possibilities to implement such exchanges.

Eligibility criteria

Eligibility criteria for individual researchers (applicants):

- Applicants must be experienced researchers who, at the date of the call deadline, are in possession of a doctoral degree or have at least four years of full-time equivalent research experience.
• Applicants must follow the ‘mobility rule’, which states they cannot apply for a fellowship if their planned destination is a country where they have had research activities for more than 12 months during the 3 years prior to the call (counted from the call deadline).

Eligibility criteria for host institutions and partner organisations:

• Beneficiaries of the fellowships are research organisations in MS or AC that host the researcher. In the case of Global Fellowships, organisations in Third Countries (Japan for example) that host the researcher during the compulsory initial outgoing period and provide additional training are partner organisations, but not beneficiaries.

• The partner organisations located in Third Countries must include in the proposal a letter of commitment to ensure their real and active participation in the proposed action. Their precise role should also be clearly described in the proposal.

Detailed eligibility conditions should be checked in the guide for applicants, which details different specific cases.

Duration of the supported research stays

For European Fellowships, the overall duration ranges from 12 to 24 months. For Global Fellowships, 12 to 24 months must be spent at a partner organisation in a Third Country, followed by an obligatory return period of 12 months at the host institution (beneficiary) in the MS or AC.

The European Fellowships offer a wide range of options which reflect different needs and demands of researchers, and are aimed in particular to support experienced researchers to undertake international and inter-sector mobility (through the Society and Enterprise Panel); individuals who wish to resume their research career in Europe after a break such as a parental leave or positions outside of research (through the Career Restart Panel); or MS/AC nationals or long-term residents who wish to come back to an MS or AC after a long stay abroad (through the Reintegration Panel).

Financial aspects

The living allowance is the EU contribution to the gross salary costs of the researcher and amounts to EUR 4,650 per month, adjusted through the application of a country correction coefficient for the cost of living in the country of the beneficiary. In addition to the living allowance, a monthly mobility allowance of EUR 600 will be paid to recruited researchers. A family allowance of EUR 500 per month will also be paid in case the researcher has family obligations.

In addition to these, so-called 'institutional costs’ are also covered by the fellowship. Research, training and networking costs amounts to EUR 800 per month and is managed by the beneficiary to contribute to expenses related to,
for example, the participation of researchers in training activities; or expenses related to research and networking costs. Management and indirect costs amounts to EUR 650 per month, to be used for the management and indirect costs of the action.

Individual Fellowships still underused in Japan

It can be observed that the majority of projects with Japanese participation in MSCA have been within the RISE (research collaboration) programme, whereas both options permitted by the Individual Fellowships, namely Japanese researchers going to MS or AC, and European researchers choosing Japan as their destination for a Global Fellowship.

Japanese institutions (public or private universities, research institutions, private research centres or companies) could support their researchers and their research teams by widely promoting possibilities offered by the Individual Fellowships, take advantage of the 2017 call to attract excellent researchers from MS/AC and to send young researchers abroad.

Japanese institutions interested in hosting an MSCA Fellow can:

- Express their interest to host fellows on the EURAXESS jobs portal, or through the Net4Mobility Expressions of Interest webpage (contact the Net4Mobility team for details: net4mobility@euresearch.ch);
- Contact their European partners, institutions or individuals alike, to remind them that the European Commission can fund individual research stays in Japan for up to two years through the Global Fellowships.

Japanese institutions interested in sending their researchers abroad as MSCA fellows can:

- Promote the call to their researchers using the call text and guide for applicants;
- Provide redirections to requests for grant proposal drafting support, by using either their own networks, the network of Horizon 2020 National Contact Points experts for MSCA;
- Suggest their researchers to subscribe for free, or participate in the activities proposed by EURAXESS Japan.

Preparing a proposal

Some advice can be kept in mind in preparing a proposal:

- Proponents should start constructing the proposal as soon as possible, in order to focus the project on its conception and elaboration;
- Researchers should coordinate the proposal with the host Institution and with the supervisor, who agrees and whose details are included in the proposal;
- Proponents should previously study the guiding documents of the programme and the call, including the policy background, in particular on the European side;
- If the researcher has already submitted a proposal which has not been approved, the feedback received from evaluators can contain extremely useful orientations on how to improve the proposal, i.e. which elements need to be strengthened, in order to be successful for a future application;

The network of National Contact Points (NCPs) is the main structure to provide guidance on all aspects of participation in Horizon 2020. The type and level of services offered may differ from country to country. In general, they provide personalised services such as: guidance on H2020; advice on administrative procedures; assistance on proposal writing; assistance in partner search.

NCPs are also established in third countries. In Japan they provide support in Japanese, focusing on research cooperation projects: NCP Japan website.
Proposals should be drafted keeping in mind the evaluation and award criteria, which orient the content of each section of the project. Each criterion has a different weight in evaluation, namely: Excellence 50%, Impact 30%, Implementation 20%. Further detail is necessary in each of the proposal parts, where elements have to be specifically addressed and highlighted, as specified in the guide for applicants;

Researchers can ask the NCP network or EURAXESS Japan for support and guidance on technical issues or for networking and matchmaking purposes.

Follow the orientations for project elaboration detailed in the IF “Guide for Applicants” and see practical tips in the Net4Mobility “Survivor’s Guide to MSCA-IF”

Japanese Researchers and Japanese Institutions are strongly encouraged to apply to MSCA, as Japan is a key strategic partner for Europe in the domain of research and innovation, and mobility schemes participate in the reinforcement of the links between the two regions.

Additional support materials

- Various resources: detailed call description by experts, how to find a host, tips & tricks by awardee
- Feedback: How to apply for an (MSCA) post doc grant?
- Hosting offers: 1000+ expressions of interest to host IF fellows by European institutions
- Interviews: voices of internationally mobile researchers with an Individual Fellowship
- Event: Grants in Practice 2017, 14 July Tokyo: improve your MSCA IF and ERC grant writing skills with professional trainers from Europe!
Meet three Japanese MSCA IF grantees who came back to Japan

At the occasion of the Grants In Practice 2017 event, we met three Japanese researchers who spent time in Europe under an MSCA Individual Fellowship grant. Let's hear about their experience!

- Taichiro, Takuma, Katsumasa, can you introduce your research interests to our readers?

Taichiro: Small silencing RNAs regulate the expression of many genes. I am interested in how such small RNAs can induce silencing events in diverse developmental and physiological settings, and how the silencing pathway can be regulated. During my four years in Switzerland (2012-2016), two years of which were supported by MSCA IF, one of my practical research objectives was to address the coevolution of RNA viruses and the invading host plants, particularly the viral proteins negatively regulating host antiviral silencing activities (Iki et al., RNA 2017). I was also investigating how plant miRNAs form effector silencing complexes with ARGONAUTE (AGO) family proteins, focusing on the structural elements embedded in miRNA intermediates (Iki, J Plant Res 2017). After leaving Switzerland, I have started new projects using an animal model Drosophila melanogaster, to explore the hidden roles of miRNAs and the pathway components on stem cell regulation.

Takuma: My research expertise is in the stellar evolution theory in the field of astrophysics. The “evolution” of stars refers to the change in the size, structure, and chemical composition of stars over time. The stellar evolution theory and its models can be a probe into the history of the universe by comparing model stars with the observations of actual stars. In particular, the production of elements in stars by nuclear fusion is a key aspect in understanding the origin of stars and the environment of star formation. I have focused on finding evidence for the first stars in the universe using stellar evolution models and a database for the chemical composition of stars.

Katsumasa: My main research field is climate science and policy. I am broadly interested in future projections of global climate change and their uncertainties. Climate change is caused mainly by the emissions of greenhouse gases like CO₂, CH₄, and N₂O. They are released to the atmosphere from a variety of sources. Analyzing the priorities of abating greenhouse gas emissions is another research direction of mine. As an ongoing research activity, I am looking into scientific implications of the Paris Agreement, which, as many of the readers are aware, aims to limit the global warming.
Dr. Takuma Suda, Research associate, University of Tokyo
PhD. in physics at Hokkaido University in 2003. After several post-docs at the Research Center for the Early Universe, University of Tokyo and at Hokkaido University, went to Keele University for an MCA-IF fellowship between 2008 and 2010 (project OBSI-FSU)

- You were previously under an MSCA IF mobility grant in Europe. Can you tell us a bit about your professional choices, and what particular circumstances lead you to work in Europe under this grant?

Taichiro: Before moving to ETH Zurich in Switzerland, I was doing a Postdoc at the National Institute of Biological Sciences (NIAS) in Japan. We have developed an in vitro system to study how silencing effector complex is formed and regulate target RNAs. I expected that such biochemical platform would nicely interact with genetic tools available to study plant gene silencing at my host lab in ETH Zurich.

Takuma: I was in my fourth year of postdoctoral position at the University of Tokyo when I applied for the MSCA IF grant. At that time, I was offered the position as assistant professor at Hokkaido University, but I also hoped to have an experience of doing research abroad. I actively participated in international conferences and promoted myself, which led to a German researcher encouraging me to apply for the MSCA IF grant. Thanks to his help, I was awarded a fellowship at Keele University in the UK to research on the simulations of the first stars in the universe.

Katsumasa: I was in Europe after my Ph.D. By the time I applied for a MSCA grant, I had already spent 6 years in Germany and Austria. I wanted to stay in Europe to continue my research career, even if it would have been a different country in Europe, which motivated me to apply for a MSCA grant.

- How did you obtain the grant? Were there specific hurdles that you managed to overcome in order to secure the position/the funding?

Taichiro: While being in Japan, I discussed with my future host about possible projects. We agreed that I would join his lab before obtaining the IF grant (thanks to ETH Zurich internal funding), to start the potential projects in order to get some preliminary data supporting our research hypotheses. After the pilot period, we had sharpened our research objectives, and prepared the document for IF grant application. As a result, it was nicely scored.

Takuma: The grant proposal document consisted of Part A (administrative document) and Part B (scientific research proposal). These documents were reviewed and scored by five criteria. Without the help of the host researchers, I could never have completed the application document successfully for Part B which was 25 pages long. I remember that I spent a lot of time to complete the document and revised it until just before the deadline during the summer holidays in mid August.

Katsumasa: Before my MSCA grant, I applied for a grant in Switzerland, which was unsuccessful. To increase the chance of getting a MSCA grant, I put lots of efforts into the proposal. I recall spending days and nights to formulate and revise my application. What was particularly helpful was a workshop at EURAXESS Switzerland on how to prepare MSCA applications. The instructor gave me useful feedback on my application. There was one problem that affected me, though, after the fellowship started. On the first day of my work, I
was told that my Euro-based grant was insufficient to secure the position because of high Swiss franc and resulting higher employment costs. This was a complicated problem, but I had to compromise to accept a position lower than what I would have otherwise been entitled to get.

- Now that the grant is finished, what would you say was its impact on your skill development and career?

Taichiro: Without the support of IF grant, my stay in Switzerland would have been more unstable or shorter. Instead, I was able to learn a lot about genetics at my host institution. Moreover, the experience abroad improved my English skill (a little bit of German also), which helped boosting my profile within Japanese academia. Partly due to these, I have successfully found the current assistant professor position in Osaka University.

Takuma: My experience of doing research in the UK from 2008 to 2010 has had a great impact on my research activity and career. Whilst at Keele, I made many trips to Europe and other countries to attend international conferences and to give seminars, which helped me to overcome the hurdles of communication with non-Japanese researchers and encouraged me to build up international collaborative works.

Katsumasa: There were definitely positive long-term impacts on my career, broadening my research expertise and professional network. I was able to start research activities in a new field that my host institute is leading globally. Without the opportunities given by the MSCA grant, I could not have gotten into this field. Related research collaboration continues today. As an additional note, acquiring new languages like German and experiences from different countries became my personal assets.

- How would you describe the research environments comparing between the different countries you visited and Japan?

Taichiro: It is always difficult to compare. In Europe, for me, researchers seem more open-minded, interacting with their colleagues and environment, enjoying their lives working on various scientific topics. I really love such life-style and am a bit worried about forgetting such good things while staying in Japan for long terms. I also loved Switzerland as a country, since we can easily access the beautiful mountains, rivers and lakes, and enjoy the many recreations all year long. The ETH Zurich is offering great opportunities for these activities.

Takuma: The research environments in the UK and Japan are quite different. The most important difference is the mobility between European countries, which was more beneficial than I expected. It was easy for me to go to other European countries, which made it in turn easier for me to attend research meetings and to give seminars in different institutes, not limited to the UK.

Katsumasa: Before moving back to Japan, I worked in four different countries in Europe: Germany, Austria, Switzerland, and Norway. I may be running a risk of

Dr. Katsumasa Tanaka, Senior Researcher, National Institute for Environmental Studies

PhD degree from the Max Planck Institute for Meteorology, Germany, in 2007. After two postdoctoral contracts in Germany and Austria, became an MSCA IF fellow from 2011 to 2013 at ETH Zurich, Switzerland (project ClimB) before continuing on several contract in Europe, to finally come back to Japan in 2014.
generalizing personal experiences, but I enjoyed more open, thorough, and sometimes intense discussions in Europe. There are probably more intellectual freedom – and enthusiasm – to pursue new ideas. Mobility is much higher across geopolitical borders and scientific fields – wherever I go, I see people from diverse backgrounds. There is a wider range of funding opportunities for research activities. I find the work culture generally less bureaucratic. On the other hand, maybe because I was a foreigner, I felt I needed to be always proactive, reach out to others, and take initiatives to get myself involved. But I should also say the competitive but stimulating and creative environment made me act like this.

- What were the challenges for you, being based in Europe, to find a position back home? How did you succeed?

Taichiro: It was not easy to publish a paper within the four years at ETH Zurich. One paper has been just accepted recently (Iki et al., RNA 2017), and another is under submission. Considering this, I was not so optimistic in my search for PI positions. Fortunately, I found a position where I can organise my own projects, working on small RNAs (my interest) using flies but not plants.

Takuma: I left Hokkaido University in the middle of my term and went to the UK, so I secured the position back at Hokkaido University and planned to complete my term after my stay abroad. Upon my return, Hokkaido University was kind to give me a one year position which allowed me to find my next position in Japan.

Katsumasa: I was not particularly keen on moving back to Japan professionally because I was more connected to Europe – and US – based researchers. Since I left Japan to pursue my master in the US, I had been abroad with little contact with Japanese researchers. So I regard myself as a researcher educated and trained in the US and Europe. On the other hand, year by year I increasingly wondered how the life in Japan would have been. My return to Japan just happened, while I was seeking a stable position somewhere, after living abroad for 15 years. One of the few Japanese researchers that I knew encouraged me to apply for a position at his institute, and fortunately I have got it. So my rather limited Japanese network created an opportunity for my return. But I know cases like mine are rare because those who lived outside of Japan for a long time do not usually return for various reasons.

- While being based in Japan, are you keeping ties with your former workplaces/labs/colleagues in Europe? If yes, how and to what end/objective?

Taichiro: An important advantage given by the IF grant is that I met colleagues in the lab sharing research fields, people in the institute but in different fields of science, sometimes through creative collaborations. These interactions with other researchers never stop. The strong ties will help my research with future collaborations. We can also think together about international grant application.
Takuma: Yes, I sometimes contact my former host researcher in Keele. After coming back to Japan, I visited him to give a seminar along with my seminar tour in the UK. Although we have not published joint publications after I left the UK, we exchange information about recent research activities when we meet at conferences. I expect that I will have a chance to collaborate with his research group in the future.

Katsumasa: It has been almost three years since I moved to Japan. Because of my longer professional experiences abroad, I am more connected to researchers outside. There are several ongoing studies that I am collaborating with my former colleagues. We are in touch mainly via emails and occasionally we have calls. Last year, I invited a former colleague from Norway to Japan for two weeks, resulting in a paper recently submitted to a journal. I also pay visits to their universities/institutes when opportunities arise. I was abroad for a total of about 100 days last year. These international activities keep myself updated and stimulate my thinking to explore new things. On top of that, I personally like traveling and consider many of my former colleagues as friends. It is always good to see them.

- From your perspective, how can/should researchers mobility flows between Europe and Japan (both ways) be improved? Also, what would be the barriers for research cooperation?

Taichiro: Probably the initial contacting step is the first barrier. In my case, I have sent a simple e-mail to my future host, and fortunately received his reply. It might not be the case for other researchers. Japanese people are usually not really good at English skills unless they are staying abroad, and would hesitate communicating with foreign researchers. It is too bad, and I think they are missing interesting opportunities.

Takuma: Funding opportunities with sufficient support for traveling will be crucial for mobility flows between Europe and Japan because we can only think of staying in foreign countries for a couple of years when we feel secure about financial and living support. I think the most serious barrier for research cooperation is language. It is often hard for Japanese researchers to communicate with foreign researchers in English. There is also a barrier for Japanese researchers to write a grant proposal in English because most Japanese researchers are not systematically trained in writing CVs and research proposals in English.

Katsumasa: I think there are enormous challenges ahead if we tackle these issues. First, from an institutional perspective, I sometimes wonder if more flexibility of transferring research funds between Europe and Japan might help facilitate collaboration. But funding may not be a key barrier because substantial collaboration can often be done without additional funding. In my view, real barriers are rooted in cultural aspects. For example, some part of Japanese communication, like brief reactions without proper elaboration in international standards, may hinder collaboration. I strongly think that many Japanese researchers need to recognize the importance of communicating effectively in
writing. Also, mentality to accept different cultures seems important. I am not sure how to foster open-mindedness, but education may play a crucial role.

-A final, more personal question: how do you envisage your career and where?

Taichiro: I want to stay in Academia as long as I can organise research projects following my curiosity to unveil the mystery of life. In future, with my skills for both plant and animal models, I want to open a lab to enjoy RNA biology in general and small silencing RNAs in particular.

Takuma: I think I will continue researching and to get involved in academia in Japan. On the other hand, I am happy to go back to Europe if I have a chance. The quality of research in astronomy is very high in Europe, and therefore there will be a great benefit to me to stay in Europe, where I can access up to date research activities and achievements. For example, the ERC grant looks very attractive for me.

Katsumasa: I hope to stay in science because I enjoy doing academic research. It has been a great journey, and I would like to continue further. At some point in the future, I hope to go back to Europe because I do miss the life there. On the other hand, I am getting used to the life in Japan, too. No matter where I am based, I will surely be in touch with European colleagues like now.

Thank you three for your time! For people interested in directly learning from them, attend the Grants in Practice 2017 event: they will be live-sharing their experience and act as facilitators!
EURAXESS Japan activities

Save the date: European Research Day 2017

The European Research Day (ERD) is coming back on 4 December 2017!

The ERD is an event where European researchers based in Japan exchange and discuss about careers and relation with Europe; and pitch their research. It is a unique opportunity for researchers to network in Japan, in a European environment and at the European scale.

As every year, a call for abstracts will be issued soon to select about fifteen researchers who will provide talks, so stay tuned!

Grants In Practice 2017: MSCA IF and ERC training

One day, two professional trainers from Europe, 4 alumni, 4 hours focused on ERC, 4 hours on MSCA IF: everything you need to improve your skills in ERC and MSCA IF grant writing.

Seminars, feedback sessions, practical and interactive exercises are on the programme. Get your seat as soon as possible!

English, Free participation (registration required)

Date and time: 14 July, 9:30 - 18:30

Venue: Delegation of the EU to Japan

Information & registration: bit.do/grantsinpractice2017